
901 San Antonio Road
Palo Alto, CA 94303 USA
650 960-1300 fax 650 969-9131

Sun Microsystems, Inc.

High Performance Graphics

Graphics Performance Improvements in the
JavaTM 2 SDK, version 1.4

Part No.: 8xx-xxxx-xx
Revision 01, August 2001



Please
Recycle

Copyright 2001 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303 U.S.A. All rights reserved.

This document and the product to which it pertains is distributed under licenses restricting its use, copying, distribution, and decompilation. No part of the
product or of this document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party
software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and
other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Solaris, Java, the Java Coffee Cup are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in
the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the
U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering
efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license
from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with
Sun’s written license agreements.

Federal Acquisitions: Commercial Software -- Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, Californie 94303 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la décompilation.
Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l’autorisation préalable et écrite de
Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par
un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux Etats-
Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Solaris, Java, le Java Coffee Cup, sont des marques de fabrique ou des marques déposées, ou marques de service, de Sun
Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture
développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les
efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie de
l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les licenciés de
Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.



High Performance Graphics

Introduction
Performance is always an issue for graphics programs. Rendering complex shapes and
patterns on a display requires iterating through the pixels and calculating values for each of
them. Loading an image and performing a filter operation on it sometimes requires allocating
a large block of memory. When using these complex shapes, patterns, and images in an
animated application, fast and reliable rendering can be difficult to acheive.

Sun Microsystems first released the 2D graphics framework, Java 2D with the Java 2 SDK,
version 1.2. The graphics framework that Java 2D provides is much more powerful than the
limited set of features offered by the JDK 1.1. For example, Java 2D includes support for
creating arbitrary shapes, text, and images and provides a uniform mechanism for performing
transformations, such as rotation and scaling, on these objects. However, these new features
required more code to implement them and extra data to be stored for their operations, both
of which caused additional overhead between the calls to the API and the rendering of pixels,
all culminating in a performance degradation compared to the JDK 1.1. Another factor
contributing to the performance degradation is that the hardware acceleration available in the
JDK 1.1 was no longer accessible when using the SDK, version 1.2 because offscreen images
were moved into software memory for the purpose of cross-platform consistency.

Now that Java 2D provides such a sophisticated graphics framework for the SDK, the Java
2D team has focussed on improving the performance of the features offered by this
framework. Many changes made in the pipeline architecture have improved the performance
of a wide range of Java 2D operations that have been habitually slow since the introduction
of Java 2D. In addition to these general improvements, version 1.4 introduces the
VolatileImage API, which allows you to take advantage of the hardware acceleration now
accessible through the Java 2D API. The VolatileImage API allows you to create
hardware-accelerated offscreen images, resulting in better performance of Swing and gaming
applications in particular and faster offscreen rendering in general.
1



New Pipeline Architecture
For version 1.4 of the SDK, the Java 2D graphics pipeline architecture has been almost
completely rewritten to solve many general performance problems. The key enhancements
made in the new architecture are:

• less pipeline validation overhead
• faster copying
• better code sharing and code reduction

Before reading about the details of these three general enhancements, it’s essential to
understand a little of the background on the rendering process used in Java 2D, which the
next section explains.

Background on Java 2D Graphics Pipelines

In the Java 2D API, a Graphics2D object encapsulates information about the current
rendering state, such as the transform to use for converting from user space to device space
and the color to use when rendering to the device. All of this state information is represented
as a set of rendering attributes on the Graphics2D object. For example, when you set the
color attribute of the Graphics2D, all of the text and shapes you render with this
Graphics2D will be drawn in that color.

The Java 2D implementation uses different modules of code, called pipelines, when
determining what to render to the device. Which pipeline Java 2D uses depends on what it is
rendering and how it is rendering it. The pipeline that Java 2D uses to fill a shape with a
complex paint is different from the one it uses to fill the same shape with a simple Color.
When filling a shape with a complex paint, Java 2D must query the Paint object every time
it needs to assign a color to a pixel whereas a simple color fill only requires iterating through
the pixels and assigning the same color to all of them.

The Java 2D implementation has many pipelines for handling different graphics primitives
and rendering attributes. The process of inspecting the rendering attributes, determining
which pipeline to use, and deciding how to store the data necessary for rendering is called
pipeline validation.

Less Pipeline Validation Overhead

For version 1.4, the new pipeline architecture reduces the performance overhead produced by
pipeline validation with several implementation changes that:

• Improve the way that data is shared by the rendering pipelines.
• Reduce the amount of code executed when responding to changes in the rendering

attributes.
• Use better heuristics to determine when a pipeline needs to be revalidated.
2 High Performance Graphics • August 2001



In the Java 2 SDK, version 1.2 and 1.3, common operations on a Graphics object often
invalidated the rendering data cached for this Graphics object. This invalidation interrupted
the rendering process by causing continuous re-creation of rendering information for the
Graphics object. The reason for this invalidation is that the rendering primitive objects
often contained both the rendering logic and the attribute data that the rendering instructions
needed to modify the destination. For example, whenever setColor was called, the pipeline
was invalidated and the rendering primitive object had to be re-created with the new color
information.

Another problem with the old architecture is that the code for the inner loops that modified
the pixels was often bundled up with the code to access the memory for the pixel data. Since
pixels could be stored in Java arrays or in the VRAM of a framebuffer and both of these
memory types needed different code to set up access to the pixels, the implementation would
have to create multiple primitives to draw a line in a particular pixel format--one for each
type of memory storage in which that pixel format could occur. In addition, the code to set
up the memory access was quite large and was duplicated in every primitive designed to
modify pixels stored in that type of memory.

The new pipeline architecture eliminated these problems by improving the way data is
cached and code is shared. The attribute data associated with a Graphics2D object is now
cached so that it can be shared between objects. In particular, color and clip information has
been removed from rendering primitives and is stored in the Graphics2D object itself where
all rendering primitives can access it. Now that rendering primitives can share data, those
primitives that used to be instantiated with the data have been deleted.

In the new architecture, a common interface is used by the primitives to access the memory
where the pixels are stored so that a single primitive can modify pixels of a given format
regardless of what type of memory those pixels are stored in. The code to access the various
types of memory is collected into a group of shared modules that these primitives invoke
through a common interface. Now all primitives that access a certain type of memory can
share the code that sets up access to that memory, and all objects that write to destinations
with the same kind of pixel data can share code that modifies that kind of pixel data. This
new ability to share code among the rendering primitives greatly reduces the code in the
implementation and in turn reduces the runtime footprint.

In some cases, revalidation is necessary, such as when an opaque color is changed to a
transparent color. However, the algorithm to render one opaque color is the same as
rendering any other opaque color on a particular destination. So replacing one opaque color
with another should not invalidate a pipeline. The implementation now only invalidates the
pipeline when an attribute is changed to a different type of value, rather than when an
attribute is changed to a different value of the same type.

Benefits of New Pipeline
The changes in the new pipeline architecture have improved all areas of Java 2D and other
APIs that use Java 2D, not only in terms of performance but also in terms of rendering
quality and reliability.
High Performance Graphics 3



More Reliable Rendering

The more intelligent data caching and code reuse available in the new pipeline architecture
have resulted in more reliable rendering in many areas, including:

• Rendering text that has attributes
• Drawing lines with large scale factors
• Performing copyArea operations

Rendering Text That Has Attributes

The Java 2D font engine produces either a bitmap or an outline path from a glyph. The font
engine can cache a bitmap in the bitmap glyph cache but cannot cache an outline path. If the
text is small, copying glyphs from the cache to the destination is a lot faster than rendering
the glyphs using an outline path, and the quality of the rendering is also better. When the
glyphs are large, the quality and the rendering performance gains are less noticeable when
using a cached bitmap. In the old architecture, the implementation rendered solid text from
the glyph cache bitmap unless the text had rendering attributes, in which case it used the
outline path pipeline. Not only was this process slow, but it also produced inconsistent
results. For example, if the opaque color was changed to a gradient, the implementation had
to switch from the bitmap pipeline to the outline path pipeline to render the text. If this
pipeline switch occurred while a program was running, the text appeared to jiggle because of
the sudden change in text quality.

In the new architecture, a more predictable heuristic is used to determine when the bitmap
pipeline or the outline path pipeline should be used. If the text is smaller than a certain size,
the implementation renders it from the glyph cache bitmap regardless of what rendering
attributes the text is rendered with. If the text is as large or larger than the threshold size, the
implementation uses the outline path pipeline, which produces about the same performance
as the bitmap pipeline because larger text would require more memory allocation in the
cache without much of an improvement in quality.

Drawing Lines With Large Scale Factors

Drawing lines with large scale factors produced integer overflows when the internal code to
render the lines tried to represent the lines as integers. If these numbers fell outside the 16-
bit range, the code would go into an infinite loop trying to clip the lines. This problem has
been resolved, and now Java 2D can handle arbitrary scale factors.

Performing copyArea Operations

Many copying routines have been improved by eliminating the use of an intermediate buffer.
In particular, the copyArea operation, which involved an overlapping source and
destination, such as used in Swing scrolling components, can often be performed in place
rather than relying on an intermediate buffer. Avoiding an intermediate buffer means less
memory allocation and garbage collection is needed.
4 High Performance Graphics • August 2001



The new image-scaling operations also avoid extra copying by bypassing an intermediate
buffer. Now DirectDraw scale operations on Win32 and software scale operations on Solaris
and Linux are able to blit the scaled image directly to the destination. Note that hardware-
accelerated scaling is currently disabled on Win32 because of quality problems, but you can
enable it with a runtime flag.

Image Scaling Performance Improvements

Rendering a scaled image using drawImage with a scale other than 1:1 was often much
slower after JDK 1.1. The drawImage implementation created a scaled image in an
intermediate buffer and then copied the buffer to the destination. The memory allocation
required for the intermediate buffer and the extra copies to and from the buffer were two
factors contributing to the performance degradation. Another reason for the performance loss
was that any accelerated image-scaling operations available on the display hardware could
not access the memory that stored the image data.

The new architecture has a software-scaling operation that scales an image directly into the
destination in a single copy operation. This new scaling operation benefits all platforms. If
you are rendering a scaled image in the Win32 environment, you can take advantage of the
access to DirectDraw surfaces that the new architecture provides if both the source and
destination of the scaling operation are in DirectDraw surfaces. The DirectDraw scaling
operation blits the scaled image directly to VRAM. Note that the hardware-accelerated image
scaling on Win32 is currently disabled because of quality and consistency problems, but you
can enable it with the runtime flag, sun.java2d.ddscale=true. See the section Flags for
Controlling Performance and Quality for more information. If hardware-accelerated scaling
is not available to you, you still benefit from the new software-scaling operation. The new
software-scaling operations and the access to hardware-accelerated scaling obviate the need
for extra memory allocation and additional copy operations.

The performance of scaling to and from an accelerated image improved significantly between
the Beta 2 and Beta 3 releases because of a new heuristic that, based on the frequency of read
operations performed on an image, can store the image to the type of memory that will allow
the best performance. See the next section for more information on the new heuristic.

Accelerated-Image Reading Performance Improvements

Translucent and scaling operations to and from an accelerated image were very slow in the
Beta 2 release of the SDK 1.4. This performance degradation was a result of frequently
reading the image from VRAM, which is a slow process compared with reading an image
from system memory. Translucent operations require frequent reads because alpha
compositing performs read-modify-write operations on the destination. Scaling from an
accelerated image requires reading from the source or destination image in order to perform
the operation successfully. The Java 2D implementation available in the Beta 3 release of the
SDK 1.4 can transfer the surface to system memory if the image is experiencing frequent
reads. If reads occur less frequently, Java 2D can transfer the surface back to VRAM. If you
High Performance Graphics 5



are working in a UNIX environment, you can override this heuristic by using the
J2D_PIXMAPS environment flag. See Environment Flag for Solaris and Linux for more
information.

Remote X Server Performance Improvements

When working with graphics in a UNIX or Linux environment, you have the option of
performing your graphics computations on a remote client by running an X Server from your
machine. However, if you used offscreen images with Java 2D while running the X Server
you would experience poor performance because the offscreen image was created on the
client side. Every time you needed to re-render the image to the destination, the image had to
be copied from the remote X client to the display. If you were using the offscreen image for
double buffering, you would have to endure a network copy of the image whenever the
screen was repainted.

Because accelerated offscreen images are available in 1.4, the offscreen image is now created
on the server side, local to the screen. Java 2D uses X protocol requests, which tell the X
server what and how to render to the offscreen image located on the server side of the
network. Only X protocol requests are sent over the network; the image itself stays on the
server side. This particular improvement also has positive implications for Swing
performance because Swing uses double-buffering. The Swing application does not have to
wait for the backbuffer to be copied over the network for every screen refresh.

One drawback with both remote X and DirectDraw is that neither antialiasing nor alpha-
blending can be accelerated. In fact, antialiasing and alpha blending operations on remote X
are usually much slower compared to version 1.3 because the image must be copied to the X
client to perform one of these operations and then the new image must be copied back to the
server. The Java 2D team is looking into solutions to this problem for future releases. Since
most Swing applications do not use alpha blending or antialiasing anyway, this problem
should not cause serious concern for developers using Swing.

Local X Server Performance Improvements

In J2SE 1.4 releases prior to Beta 3, drawImage performance when rendering to the screen
in some cases was worse than drawImage performance in J2SE 1.3. The reason for the
performance degradation was that Java 2D was not using the Shared Memory Extension on
Solaris and Linux in the local display environment. The Shared Memory Extension allows an
X server and X client running on the same machine to jointly access shared memory, which
enables faster data transfers.

For Beta 3, Shared Memory Extension is used on Solaris and Linux in the local display
environment, resulting in better performance when rendering to the screen and to the images.
When DGA is not available, toolkit images and images created with
Component.createImage or GraphicsConfiguration.createCompatibleImage are
6 High Performance Graphics • August 2001



stored in pixmaps instead of system memory, enabling faster copies to the screen using X
protocol requests. You can override this behavior with the pmoffscreen runtime flag,
described in the section Runtime Flag For Solaris and Linux.

Pixmaps that are not in shared memory might be stored in VRAM, which allows for fast
copies to the screen, but reading from these images is very slow, as described in the section
Accelerated-Image Reading Performance Improvements. Since Shared Memory Extension is
now accessible in the local display environment, images that experience frequent reads can
be stored in Shared Memory Pixmaps, which always reside in system memory. Java 2D can
detect if an image is read from more frequently or copied from more frequently and can
transfer the image to the appropriate memory. You can control which memory is used by
setting the J2D_PIXMAPS environment variable described in section Environment Flag for
Solaris and Linux.

Swing API Benefits

When using Swing in the SDK 1.4, you should notice better performance in many cases
because Swing uses many of the Java 2D operations that were targeted for performance
improvements for version 1.4. Because the rendering of Swing hierarchies relies heavily on
common operations like setColor and Graphics.create, the invalidation and re-creation
of rendering data caused poor repaint performance for many Swing applications. For this
reason, Swing is a primary beneficiary of the reduced overhead resulting from the graphics
pipeline improvements. Now that image data, such as color, is stored in a central, shared
location, the many calls to setColor that Swing performs do not invalidate the pipeline, and
thus do not result in worse performance for Swing applications. The process of creating and
disposing of Graphics objects is also faster as a result of the general pipeline
improvements. Since each subcomponent of a JComponent draws itself with a new
Graphics object, a particular Swing application could create and dispose of many
Graphics objects. The create and dispose operations now are much faster and produce less
memory overhead.

Some Swing components allow you to scroll over a piece of data, such as an image or text.
Often the scrolling destination overlaps the source, and in this case a copy is performed.
Prior to version 1.4, the information would be copied to an intermediate buffer and then
copied to the screen. These copies now occur in place, thereby avoiding the extra memory
allocation and garbage collection associated with an intermediate buffer.

The new access to hardware acceleration for offscreen images has also dramatically
improved Swing performance. Since Swing uses double buffering by default, Swing
applications will generally perform better because of offscreen image acceleration. Swing
performance on remote X is also improved because the backbuffer that Swing uses for
double buffering is stored on the server side, thereby avoiding a network copy of the
backbuffer every time the screen is repainted. For more information on the remote X
improvements see the Remote X Server Performance Improvements section. See the next
section for more information on hardware acceleration for offscreen images.
High Performance Graphics 7



Hardware Acceleration for Offscreen Images
Java 2D provides access to hardware acceleration for offscreen images, resulting in better
performance of rendering to and copying from these images. On win32 hardware
acceleration is achieved through DirectDraw, an API designed for giving applications direct
access to video hardware memory and acceleration. On Linux and Solaris, offscreen images
might be stored in a pixmap, which is an area of memory that is stored on the X server side
of the network.

In the case of DirectDraw, any image stored in accelerated memory could be “lost” at any
time: certain events can cause the Windows operating system to clear the image out of
VRAM, thus destroying the contents of the image.

A VolatileImage represents an offscreen image whose content can be lost at any time.
However, a VolatileImage offers performance benefits over other kinds of images because
a VolatileImage allows an application to take advantage of hardware acceleration, thus
enabling the application to run at the native speed of the underlying platform.

The new hardware acceleration has improved the performance of Swing applications because
Swing double-buffering now uses VolatileImage. For more information on hardware
acceleration, see the VolatileImage API User’s Guide.

Tips for Achieving Better Performance
Although the new performance improvements eliminate a lot of problems, they still don’t
optimize everything. In particular, alpha blending and anti aliasing will adversely affect
performance because calculating alpha values for each pixel takes more work than rendering
opaque values. In addition, Java 2D cannot hardware accelerate images with alpha at this
time. Only opaque images or images with 1-bit transparency can be hardware accelerated.
Acceleration support for 1-bit transparency enables you to accelerate sprites with transparent
pixels. You can use 1-bit transparency to make the background color of a sprite rectangle
transparent so that the character rendered in the sprite appears to move through the landscape
of your game, rather than within the box represented by the sprite rectangle’s background
color.

When creating an image whose data is copied to the screen, you should create the image with
the same depth and type of the screen. This way, no pixel format conversion between the
image and the screen is necessary before copying the image. To create such an image, use
either Component.createImage or
GraphicsConfiguration.createCompatibleImage, or use a BufferedImage created
with the ColorModel of the screen. The pre-defined types of BufferedImage have their
own color models.

Rectangular fills--including horizontal and vertical lines--tend to perform better than
arbitrary or non-rectangular shapes whether they are rendered in software or with hardware
acceleration. If your application must repeatedly render non-rectangular shapes, consider
drawing the shapes into 1-bit transparency images and copying the images as needed.
8 High Performance Graphics • August 2001

ftp://ftp.java.sun.com/docs/j2se1.4/VolatileImage.pdf


If you are still experiencing low frame rates, try commenting out pieces of your code to find
the particular operations that are causing problems, and use the tips in this section to replace
these problem operations with something that might perform better.

Another way to identify performance problems in your application is to run it with the new
trace flag introduced in Beta 3 of the SDK, version 1.4. See the section Performance-Tuning
Flag For All Platforms for more information on the trace flag.

If you still are experiencing performance problems, submit a bug with your test case.

Flags for Controlling Performance and Quality
In any graphics program, performance and quality can sometimes seem mutually exclusive.
Most of the changes that the Java 2D team has made in the pipeline architecture have greatly
improved performance without compromising quality, but in some situations you might want
to decide whether you prefer high quality over high performance. You might also be working
in an environment that does not allow your application to derive a performance benefit from
a feature designed to improve performance in other environments. This list of flags allows
you to disable or enable certain features so that you can obtain the best possible performance
and rendering quality available in your environment.

Environment Flags

These environment flags are for use on a UNIX environment. You set these flags by using
the setenv command. For example, to turn off DGA support and hardware acceleration, enter
the following at the command line:

setenv NO_J2D_DGA

Environment Flag for Solaris and Linux

With the release of Beta 3 of the SDK, version 1.4, Java 2D uses Shared Memory Pixmaps in
the local display environment for storing images that experience frequent reads. You can
override this default behavior by using the J2D_PIXMAPS environment flag:

J2D_PIXMAPS=shared/server

If you set this flag to “shared”, all images will be stored in Shared Memory Pixmaps if you
are working in a local display environment. Conversely, if you set this flag to “server”, all
images will be stored in normal pixmaps, not Shared Memory Pixmaps. The normal pixmaps
can be stored in VRAM at the discretion of the device driver.
High Performance Graphics 9

http://developer.java.sun.com/developer/bugParade/index.jshtml


Environment Flags for Solaris Sparc

• NO_J2D_DGA

Set this environment flag to turn off DGA support and hardware acceleration, which
sometimes helps to reduce rendering artifacts on Solaris Sparc.

• USE_DGA_PIXMAPS

Set this environment flag to turn on DGA acceleration for pixmaps. The use of DGA with
pixmaps is disabled by default because it was causing system freezes on some video
boards, such as PGX32.

Runtime Flags

You set these flags when you are running your application. For example, to turn off
DirectDraw, run your application like this:

java -Dsun.java2d.noddraw=true <yourapp>

Performance-Tuning Flag For All Platforms

If your application is experiencing less-than-desirable performance, the new trace runtime
flag can help you determine the source of the problem. The flag is specified with a list of
options:

-Dsun.java2d.trace=<optionname>,<optionname>,...

The options are:

If you use the log option, the Java runtime will print the executed primitives’ names, most of
which will be in this format:

<classname>.<methodname>(<src>,<composite>,<dst>)

log print out the name of each primitive as it is executed

timestamp precede each log entry with the currentTimeMillis()

count at exit, print out a count of each primitive used

out:<filename> send output (logging and counts) to the indicated file

help print out a short usage statement

verbose print out a summary of the options chosen for this run
10 High Performance Graphics • August 2001



The methodname represents the basic graphics operation that is used to do the actual
rendering work of a Graphics method invocation. These method names will not necessarily
map directly to methods on the Graphics object, nor will the number of calls made on the
Graphics object map directly to the number of primitive operations performed.

The src and dst represent the type of surfaces or source data involved in the operation.

The composite names match the names in the AlphaComposite class fairly closely with
the suffix "NoEa" meaning that the AlphaComposite instance had an "extra alpha" attribute
of 1.0. The "SrcNoEa" type is the most commonly used composite type and represents the
simplest way of transferring pixels with no blending required. "SrcNoEa" is often used
behind the scenes even though the default composite is "SrcOver" when opaque colors and
images are rendered because the two operations are indistinguishable for opaque source
pixels.

Platform rendering pipelines are sometimes used for doing opaque operations on surfaces
accessible by a platform renderer, such as X11, GDI, or DirectDraw. Their names currently
use a simplified naming format, which has a prefix for the platform renderer and the name of
the operation but without any classname or operand type list. Examples are "X11DrawLine",
"GDIFillOval", and "DXFillRect". In the future these names should more closely
approximate the names of the other primitives.

Runtime Flag For Solaris and Linux

Starting with the Beta 3 release of the SDK, version 1.4, Java 2D stores images in pixmaps
by default when DGA is not available, whether you are working in a local or remote display
environment. You can override this behavior with the pmoffscreen flag:

-Dsun.java2d.pmoffscreen=true/false 

If you set this flag to true, offscreen pixmap support is enabled even if DGA is available. If
you set this flag to false, offscreen pixmap support is disabled. Disabling offscreen pixmap
support can solve some rendering problems.

Runtime Flags For Win32

• -Dsun.java2d.noddraw=true

Setting this flag to true turns off DirectDraw usage, which sometimes helps to get rid of
a lot of rendering problems on Win32.

• -Dsun.java2d.ddoffscreen=false

Setting this flag to false turns off DirectDraw offscreen surfaces acceleration by forcing
all createVolatileImage calls to become createImage calls, and disables hidden
acceleration performed on surfaces created with createImage.

• -Dsun.java2d.ddscale=true

Setting this flag to true enables hardware-accelerated scaling. Hardware scaling is
disabled by default to avoid rendering artifacts in existing applications. These rendering
artifacts are caused by possible inconsistencies between the scale method that the software
High Performance Graphics 11



scaling operation uses (nearest neighbor) and the different scale methods that video cards
use. Certain events that occur while an application is running might cause a scaled image
to be rendered partially with hardware scaling operations and partially with software
scaling operations, resulting in an inconsistent appearance. For now, you can enable
acceleration by setting the ddscale flag to true.

Examples Demonstrating Performance Gains
Since the graphics performance gains you experience will depend partially on the hardware
and operating system environment that you have, we have provided, in place of charts and
data, this set of examples that you can run to see the performance improvements for yourself.
Try running them with both version 1.3 and 1.4 of the Java 2 SDK.

CopyAreaPerf

This example scrolls the screen a certain number pixels at a time, demonstrating how the
reduction in memory allocation and garbage collection can really speed up your copying
operations. When you run the example, specify how many pixels you want the application to
scroll at a time.

FadeTextSplash

The FadeTextSplash example shows fading text using alpha composites. If you run it with
version 1.4, you will see the bitmap glyph cache in action. Notice that the text doesn’t jiggle
and you will not see any metrics changes when you run the application with version 1.4.
When you run the example, you can specify what text you want the application to display.

PhotoMesa

This application is a digital image library browser and demonstrates the image-scaling
improvements in Java 2D by allowing you to zoom in on an image in the library. The
application was developed by Dr. Ben Bederson, assistant professor of computer science, and
director of the Human-Computer Interaction Lab at the University of Maryland. When you
run this example, make sure you are using the Beta 2 or later release of the Java 2 SDK,
version 1.4.

See the VolatileImage API User’s Guide for examples demonstrating the
VolatileImage API.
12 High Performance Graphics • August 2001

http://java.sun.com/j2se/1.4/
http://java.sun.com/j2se/1.4/
http://java.sun.com/features/2001/08/photomesa.html
ftp://ftp.java.sun.com/docs/j2se1.4/VolatileImage.pdf
http://java.sun.com/products/java-media/2D/samples/CopyAreaPerf.java
http://java.sun.com/products/java-media/2D/samples/FadeTextSplash.java


High Performance Graphics 13



Sun Microsystems, Inc. 
901 San Antonio Road 
Palo Alto, CA 94303 
650 960-1300

For U.S. Sales Office locations, call: 
800 821-4643 
In California: 
800 821-4642

Australia: (02) 413 2666
Belgium: 32 2 716 7911 
Canada: 416 477-6745 
Finland: 358-0-502 27 00 
France: (1) 30 67 50 00 
Germany: (0) 89-46 00 8-0 
Hong Kong: 852 802 4188 
Italy: 039 60551 
Japan: (03) 221-7021 
Korea: 822-563-8700 
Latin America: 415 688-9464 
The Netherlands: 033 501234 
New Zealand: (04) 499 2344 
Nordic Countries: +46 (0) 8 623 90 00 
PRC: 861-831-5568 
Singapore: 224 3388 
Spain: (91) 5551648 
Switzerland: (1) 825 71 11 
Taiwan: 2-514-0567 
UK: 44 (0)1252 420000

Elsewhere in the world, 
call Corporate Headquarters: 
650 960-1300 
Intercontinental Sales: 650 688-9000


	High Performance Graphics
	Introduction
	New Pipeline Architecture
	Background on Java 2D Graphics Pipelines
	Less Pipeline Validation Overhead

	Benefits of New Pipeline
	More Reliable Rendering
	Rendering Text That Has Attributes
	Drawing Lines With Large Scale Factors
	Performing copyArea Operations

	Image Scaling Performance Improvements
	Accelerated-Image Reading Performance Improvements
	Remote X Server Performance Improvements
	Local X Server Performance Improvements
	Swing API Benefits

	Hardware Acceleration for Offscreen Images
	Tips for Achieving Better Performance
	Flags for Controlling Performance and Quality
	Environment Flags
	Environment Flag for Solaris and Linux
	Environment Flags for Solaris Sparc

	Runtime Flags
	Performance-Tuning Flag For All Platforms
	Runtime Flag For Solaris and Linux
	Runtime Flags For Win32


	Examples Demonstrating Performance Gains


